February 25, 2016 Solution
Statistics - IT - Midterm Examination - Semester I1

1. For observations Y7, ---,Y,,, consider the linear model
}/i :60+B1$i+6i7i: 17 ;T

where x; is the value of a co-variate corresponding to Y; and ¢; are i.i.d. errors having the N(0,0?)
distribution. Here By, 81 and 02 > 0 are unknown parameters and x; are treated as known constants.
Also —o0 < By < 00, —00 < f1 < 0.

(a) Show that the distribution of Y7,--- , Y, belongs to k-variate exponential family. Find k.

(b) Use properties of exponential family to set up equations and solve them to find MLE of
(607ﬁ1a0—2)'

Solution:

(a) Let 8 = (Bo, B1,0%). The probability density function of Y7, -- ,Y,, can be written as
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The distribution of Y7,--- Y], belongs to 3-variate exponential family.
(b) Using (a), the log-likelihood is
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where H(y1,- - ,yn) = log(h(y1, -+ ,yn)) is independent of 8.
Taking the first order partial derivatives of the log-likelihood with respect to By, f1 and o2,
and equating them to 0, we get the following equations (under the assumption o2 > 0):
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Let By, f1 and 62 be the solutions to (2) — (4). Then,
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Next, to show that the (Bhﬁo, 52) is the MLE of (S0, 81, 02).

Define S(Bo,81) = >, (yi — Bo — B1z;)?. The function S(Bo, 41) is quadractic in By and ;.
Taking the first order partial derivative of S5y, 81) with respect 5y and 8; and equating them
to 0 yields the solutions By and ;. The Hessian matrix

2n 2 Z?:l €T,
23w 230, @
is positive definitive. Therefore, S(fo, 81) attains its global minimun at (8o, 81) = (8o, B1) -
Hence, for any value of o2,
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Then, setting the derivative of this function with respect to o2 to 0, yields the unique solution
&2. Also,
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Hence, the MLE of o2 is 62.
The MLEs of 81, By and o2 are 317 BO and &2, respectively.
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2. Consider a family of regular models with density f(z]0) such that f(z|6) > 0 for all § € © and for
all z € x. Suppose T'(X) is sufficient for this family of distributions indexed by 6. Show that if

T(z) = T(y) for two sample points x and y then J;Ez‘lzg is free of 6.

Solution: As T(X) is a sufficient statistic, using the Factorization Theorem, there exist functions
g(+|0) and h(zx), such that

f(z]0) = g(T(x)|0)h(x), for all sample points z and for all § € ©.

Then, for the two sample points z,y with T'(z) = T(y),

f(z]0) _ g(T(@)|0)h(x) _ h(z)
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3. Roll a balanced six-faced die and let N denote the number of dots that show up. Having observed
N = n, perform n Bernoulli(f) trials, getting X successes.

(a) Find a minimal sufficient statistic for 6.

(b) Show that minimal sufficient statistic is not complete in this case.

Solution: The pmf of (X, N) is

(e -0y~

Flanle) = 2

, forx =0,--- ,nandn=1,---,6. (5)
(a) The ratio (0 < 6 < 1)
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is a constant as a function of # if and only if z = y and ny = ny. Hence, the minimal sufficient
statistic for 0 is (X, N).

(b) N is an ancilliary statistic. The minimal sufficient statistic (X, N) and N are not independent.
Define g(X, N) = N — 7/2. Then,

E(9(X,N)) = E(N — g) =0 for all 6, but P(N — ; =0)=0#1.

Hence, the minimal sufficient statistic (X, N) is not complete.
(|

4. Suppose X1, Xs,-+, X, are i.i.d. observations from Exponential(A) (with density proportional to
exp(—Az)), where n > 3 and 0 < .
(a) Does this belong to exponential family of distributions ? Justify.
(b) Find the UMVUE of A.
(¢) Does the UMVUE attain the C-R lower bound?



Solution: The joint probability density function of Xy,---, X, is

flze, - yzp]N) = exp( - /\z:ar:i)/\"7 for z; >0,1=1,---n.
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(a) The distribution of Xj, -+, X,, belongs to an exponential family. The joint distribution can
be written as
flzy, -, zp]X) = emp(n()\)t(xl, e ,xn))c()\)I(xi >0,i=1,---,n), (7)

n(A\) = A\ t(zg, -, zp) :—in,c()\) = A", and h(zy, - ,2p) =I(z; >0,i=1,--- ,n).
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(b) Using the Factorization Theorem, Y1, X; is a sufficient statistic for \. T'=>""_, X; follows
a Gamma distribution, with pdf as

A(tA) = ()

Nt Lexp(—t)), for t > 0.
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Hence, an unbiased estimator for X is (n —1)/(}_7_, X;). Using the Rao-Blackwell Theorem,
(n—1)/(>", X;) is also the UMVUE.
(c) Using (a), the C-R lower bound for an unbiased estimator of X is
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The variance of the UMVUE, (n—1)/(3_7, X;), is A?/(n —2). The UMVUE does not attain
the C-R lower bound.
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5. Consider a random sample X1, Xo,..., X, from U(0,0), where § > 0.

(a) Construct a 95% confidence interval for § which has the form:
[X(n), X(n)/c] for some constant c.

(b) If the confidence interval constructed from observed data is the interval [1,12.5], how will you
interpret it?
Solution: The random sample X1, ---, X, is from U(0,6), § > 0.
(a) The pdf of X,/0 is
flz) =nz"! for 0 <z <1. (9)
We need to find ¢, such that P[X,) <6 < @] = 0.95.
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Choosing ¢ = 0.05'/", we get P[X <0< @] =0.95.



(b) While X(,,) <6 < 2 i5 an interval estimator for 6, [1,12.5] is the interval estimate for 6.

The observed interval [1,12.5] contains the true value of 6 with 95% confidence.
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