
February 25, 2016 Solution
Statistics - II - Midterm Examination - Semester II

1. For observations Y1, · · · , Yn, consider the linear model

Yi = β0 + β1xi + εi, i = 1, · · · , n,

where xi is the value of a co-variate corresponding to Yi and εi are i.i.d. errors having the N(0, σ2)
distribution. Here β0, β1 and σ2 > 0 are unknown parameters and xi are treated as known constants.
Also −∞ < β0 <∞, −∞ < β1 <∞.

(a) Show that the distribution of Y1, · · · , Yn belongs to k-variate exponential family. Find k.

(b) Use properties of exponential family to set up equations and solve them to find MLE of
(β0, β1, σ

2).

Solution:

(a) Let θ = (β0, β1, σ
2). The probability density function of Y1, · · · , Yn can be written as

f(y1, · · · , yn|θ) =
1

(2π)n/2σn
exp
(
−
∑n
i=1(yi − β0 − β1xi)2

2σ2

)
, for y1, · · · , yn ∈ R

= exp
( 3∑
i=1

ηi(θ)ti(y1, · · · , yn)
)
c(θ)h(y1, · · · , yn), (1)

where

η1(θ) = − 1

2σ2
, t1(y1, · · · , yn) =

n∑
i=1

y2i ,

η2(θ) =
β0
σ2
, t2(y1, · · · , yn) =

n∑
i=1

yi,

η3(θ) =
β1
σ2
, t3(y1, · · · , yn) =

n∑
i=1

xiyi,

c(θ) =
1

σn
exp
(
− nβ2

0

2σ2
−

2β0β1
∑n
i=1 xi

2σ2
−
β2
1

∑n
i=1 x

2
i

2σ2

)
and

h(y1, · · · , yn) =
1

(2π)n/2
.

The distribution of Y1, · · · , Yn belongs to 3-variate exponential family.

(b) Using (a), the log-likelihood is

logf(θ|y1, · · · , yn) =

3∑
i=1

ηi(θ)ti(y1, · · · , yn)− nβ2
0

2σ2
−

2β0β1
∑n
i=1 xi

2σ2

−
β2
1

∑n
i=1 x

2
i

2σ2
− n

2
log(σ2) +H(y1, · · · , yn),
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where H(y1, · · · , yn) = log(h(y1, · · · , yn)) is independent of θ.

Taking the first order partial derivatives of the log-likelihood with respect to β0, β1 and σ2,
and equating them to 0, we get the following equations (under the assumption σ2 > 0):

n∑
i=1

yixi − β1
n∑
i=1

x2i − β0
n∑
i=1

xi = 0. (2)

n∑
i=1

yi − β0 − β1
n∑
i=1

xi = 0. (3)

∑n
i=1 y

2
i

2(σ2)2
−
β0
∑n
i=1 yi

(σ2)2
−
β1
∑n
i=1 yixi

(σ2)2
+

nβ2
0

2(σ2)2
+
β0β1

∑n
i=1 xi

(σ2)2
+
β2
1

∑n
i=1 x

2
i

2(σ2)2
− n

2(σ2)
= 0.

(4)

Define

Sxy =

n∑
i=1

(xi − x̄n)(yi − ȳn) and Sxx =

n∑
i=1

(xi − x̄n)2.

Let β̂0, β̂1 and σ̂2 be the solutions to (2)− (4). Then,

β̂1 =
Sxy
Sxx

, β̂0 = ȳn − β̂1x̄n and σ̂2 =
1

n

n∑
i=1

(yi − β̂0 − β̂1xi)2.

Next, to show that the (β̂1, β̂0, σ̂
2) is the MLE of (β0, β1, σ

2).

Define S(β0, β1) =
∑n
i=1(yi − β0 − β1xi)2. The function S(β0, β1) is quadractic in β0 and β1.

Taking the first order partial derivative of S(β0, β1) with respect β0 and β1 and equating them

to 0 yields the solutions β̂0 and β̂1. The Hessian matrix[
2n 2

∑n
i=1 xi

2
∑n
i=1 xi 2

∑n
i=1 x

2
i

]
is positive definitive. Therefore, S(β0, β1) attains its global minimun at (β0, β1) = (β̂0, β̂1) .
Hence, for any value of σ2,

1

(σ2)n/2
exp
(
−
∑n
i=1(yi − β0 − β1xi)2

2σ2

)
≤ 1

(σ2)n/2
exp
(
−
∑n
i=1(yi − β̂0 − β̂1xi)2

2σ2

)
.

From the above, we only need to show that 1
(σ2)n/2 exp

(
−

∑n
i=1(yi−β̂0−β̂1xi)

2

2σ2

)
attains its max-

imum at σ̂2. Let

log(g(σ2|y1, . . . , yn)) =
(
−
∑n
i=1(yi − β̂0 − β̂1xi)2

2σ2

)
− n

2
log(σ2).

Then, setting the derivative of this function with respect to σ2 to 0, yields the unique solution
σ̂2. Also,

d2log(g(σ2|y1, . . . , yn))

d(σ2)2

∣∣∣
σ2=σ̂2

< 0.

Hence, the MLE of σ2 is σ̂2.

The MLEs of β1, β0 and σ2 are β̂1, β̂0 and σ̂2, respectively.
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2. Consider a family of regular models with density f(x|θ) such that f(x|θ) > 0 for all θ ∈ Θ and for
all x ∈ χ. Suppose T (X) is sufficient for this family of distributions indexed by θ. Show that if

T (x) = T (y) for two sample points x and y then f(x|θ)
f(y|θ) is free of θ.

Solution: As T (X) is a sufficient statistic, using the Factorization Theorem, there exist functions
g(·|θ) and h(x), such that

f(x|θ) = g(T (x)|θ)h(x), for all sample points x and for all θ ∈ Θ.

Then, for the two sample points x, y with T (x) = T (y),

f(x|θ)
f(y|θ)

=
g(T (x)|θ)h(x)

g(T (y)|θ)h(y)
=
h(x)

h(y)

is free of θ. �

3. Roll a balanced six-faced die and let N denote the number of dots that show up. Having observed
N = n, perform n Bernoulli(θ) trials, getting X successes.

(a) Find a minimal sufficient statistic for θ.

(b) Show that minimal sufficient statistic is not complete in this case.

Solution: The pmf of (X, N) is

f(x, n|θ) =

(
n
x

)
θx(1− θ)n−x

6
, for x = 0, · · · , n and n = 1, · · · , 6. (5)

(a) The ratio (0 < θ < 1)

f(x, n1|θ)
f(y, n2|θ)

=

(
n1

x

)
θx(1− θ)n1−x(

n2

y

)
θy(1− θ)n2−y

, (6)

is a constant as a function of θ if and only if x = y and n1 = n2. Hence, the minimal sufficient
statistic for θ is (X,N).

(b) N is an ancilliary statistic. The minimal sufficient statistic (X,N) and N are not independent.
Define g(X,N) = N − 7/2. Then,

E(g(X,N)) = E(N − 7

2
) = 0 for all θ, but P (N − 7

2
= 0) = 0 6= 1.

Hence, the minimal sufficient statistic (X,N) is not complete.

�

4. Suppose X1, X2, · · · , Xn are i.i.d. observations from Exponential(λ) (with density proportional to
exp(−λx)), where n ≥ 3 and 0 < λ.

(a) Does this belong to exponential family of distributions ? Justify.

(b) Find the UMVUE of λ.

(c) Does the UMVUE attain the C-R lower bound?
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Solution: The joint probability density function of X1, · · · , Xn is

f(x1, · · · , xn|λ) = exp
(
− λ

n∑
i=1

xi
)
λn, for xi > 0, i = 1, · · ·n.

(a) The distribution of X1, · · · , Xn belongs to an exponential family. The joint distribution can
be written as

f(x1, · · · , xn|λ) = exp
(
η(λ)t(x1, · · · , xn)

)
c(λ)I(xi > 0, i = 1, · · · , n), (7)

where

η(λ) = λ, t(x1, · · · , xn) = −
n∑
i=1

xi, c(λ) = λn, and h(x1, · · · , xn) = I(xi > 0, i = 1, · · · , n).

(b) Using the Factorization Theorem,
∑n
i=1Xi is a sufficient statistic for λ. T =

∑n
i=1Xi follows

a Gamma distribution, with pdf as

gλ(t|λ) =
1

Γ(n)
λntn−1exp(−tλ), for t > 0.

Eλ
( 1

T

)
=

∫ ∞
0

1

t

1

Γ(n)
λntn−1exp(−tλ)dt =

λ

n− 1
.

Hence, an unbiased estimator for λ is (n− 1)/(
∑n
i=1Xi). Using the Rao-Blackwell Theorem,

(n− 1)/(
∑n
i=1Xi) is also the UMVUE.

(c) Using (a), the C-R lower bound for an unbiased estimator of λ is

1

−Eλ
(
∂2

∂λ2

(
− λ
∑n
i=1xi + nlog(λ)

)) =
λ2

n
. (8)

The variance of the UMVUE, (n− 1)/(
∑n
i=1Xi), is λ2/(n− 2). The UMVUE does not attain

the C-R lower bound.

�

5. Consider a random sample X1, X2, . . . , Xn from U(0, θ), where θ > 0.

(a) Construct a 95% confidence interval for θ which has the form:
[X(n), X(n)/c] for some constant c.

(b) If the confidence interval constructed from observed data is the interval [1, 12.5], how will you
interpret it?

Solution: The random sample X1, · · · , Xn is from U(0, θ), θ > 0.

(a) The pdf of X(n)/θ is

f(x) = nxn−1, for 0 ≤ x ≤ 1. (9)

We need to find c, such that P [X(n) ≤ θ ≤
X(n)

c ] = 0.95.

P [X(n) ≤ θ ≤
X(n)

c
] = P [c ≤

X(n)

θ
≤ 1] = 1− cn.

Choosing c = 0.051/n, we get P [X(n) ≤ θ ≤
X(n)

c ] = 0.95.
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(b) While X(n) ≤ θ ≤ X(n)

c is an interval estimator for θ, [1, 12.5] is the interval estimate for θ.
The observed interval [1, 12.5] contains the true value of θ with 95% confidence.

�
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